Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Blood Adv ; 7(16): 4586-4598, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37339484

RESUMEN

TP53-mutated myeloid malignancies are associated with complex cytogenetics and extensive structural variants, which complicates detailed genomic analysis by conventional clinical techniques. We performed whole-genome sequencing (WGS) of 42 acute myeloid leukemia (AML)/myelodysplastic syndromes (MDS) cases with paired normal tissue to better characterize the genomic landscape of TP53-mutated AML/MDS. WGS accurately determines TP53 allele status, a key prognostic factor, resulting in the reclassification of 12% of cases from monoallelic to multihit. Although aneuploidy and chromothripsis are shared with most TP53-mutated cancers, the specific chromosome abnormalities are distinct to each cancer type, suggesting a dependence on the tissue of origin. ETV6 expression is reduced in nearly all cases of TP53-mutated AML/MDS, either through gene deletion or presumed epigenetic silencing. Within the AML cohort, mutations of NF1 are highly enriched, with deletions of 1 copy of NF1 present in 45% of cases and biallelic mutations in 17%. Telomere content is increased in TP53-mutated AMLs compared with other AML subtypes, and abnormal telomeric sequences were detected in the interstitial regions of chromosomes. These data highlight the unique features of TP53-mutated myeloid malignancies, including the high frequency of chromothripsis and structural variation, the frequent involvement of unique genes (including NF1 and ETV6) as cooperating events, and evidence for altered telomere maintenance.


Asunto(s)
Cromotripsis , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Humanos , Mutación , Aberraciones Cromosómicas , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Trastornos Mieloproliferativos/genética , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Genómica , Proteína p53 Supresora de Tumor/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-37160317

RESUMEN

Alterations in epigenetic regulators are increasingly recognized as early events in tumorigenesis; thus, patients with acquired or inherited variants in epigenetic regulators may be at increased risk for developing multiple types of cancer. DNMT3A overgrowth syndrome (DOS), caused by germline pathogenic variants in the DNA methyltransferase gene DNMT3A, has been associated with a predisposition toward development of hematopoietic and neuronal malignancies. DNMT3A deficiency has been described to promote keratinocyte proliferation in mice. Although altered DNA methylation patterns are well-recognized in melanoma, the role of DNA methyltransferases in melanoma pathogenesis is not clear. We report the case of an adult DOS patient with a germline DNMT3A loss-of-function mutation, who developed an early-onset melanoma with regional lymph node metastatic disease. Exome sequencing of the primary tumor identified an additional acquired, missense DNMT3A mutation in the dominant tumor clone, suggesting that the loss of DNMT3A function was relevant for the development of this tumor.


Asunto(s)
Melanoma , Neoplasias Primarias Secundarias , Humanos , Proliferación Celular , Metilasas de Modificación del ADN , Genotipo , Melanoma/genética , Síndrome
3.
medRxiv ; 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36711871

RESUMEN

TP53 -mutated myeloid malignancies are most frequently associated with complex cytogenetics. The presence of complex and extensive structural variants complicates detailed genomic analysis by conventional clinical techniques. We performed whole genome sequencing of 42 AML/MDS cases with paired normal tissue to characterize the genomic landscape of TP53 -mutated myeloid malignancies. The vast majority of cases had multi-hit involvement at the TP53 genetic locus (94%), as well as aneuploidy and chromothripsis. Chromosomal patterns of aneuploidy differed significantly from TP53 -mutated cancers arising in other tissues. Recurrent structural variants affected regions that include ETV6 on chr12p, RUNX1 on chr21, and NF1 on chr17q. Most notably for ETV6 , transcript expression was low in cases of TP53 -mutated myeloid malignancies both with and without structural rearrangements involving chromosome 12p. Telomeric content is increased in TP53 -mutated AML/MDS compared other AML subtypes, and telomeric content was detected adjacent to interstitial regions of chromosomes. The genomic landscape of TP53 -mutated myeloid malignancies reveals recurrent structural variants affecting key hematopoietic transcription factors and telomeric repeats that are generally not detected by panel sequencing or conventional cytogenetic analyses. Key Points: WGS comprehensively determines TP53 mutation status, resulting in the reclassification of 12% of cases from mono-allelic to multi-hit Chromothripsis is more frequent than previously appreciated, with a preference for specific chromosomes ETV6 is deleted in 45% of cases, with evidence for epigenetic suppression in non-deleted cases NF1 is mutated in 48% of cases, with multi-hit mutations in 17% of these cases TP53 -mutated AML/MDS is associated with altered telomere content compared with other AMLs.

4.
Blood Cancer Discov ; 3(4): 330-345, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35709710

RESUMEN

Progression from myelodysplastic syndromes (MDS) to secondary acute myeloid leukemia (AML) is associated with the acquisition and expansion of subclones. Our understanding of subclone evolution during progression, including the frequency and preferred order of gene mutation acquisition, remains incomplete. Sequencing of 43 paired MDS and secondary AML samples identified at least one signaling gene mutation in 44% of MDS and 60% of secondary AML samples, often below the level of standard sequencing detection. In addition, 19% of MDS and 47% of secondary AML patients harbored more than one signaling gene mutation, almost always in separate, coexisting subclones. Signaling gene mutations demonstrated diverse patterns of clonal evolution during disease progression, including acquisition, expansion, persistence, and loss of mutations, with multiple patterns often coexisting in the same patient. Multivariate analysis revealed that MDS patients who had a signaling gene mutation had a higher risk of AML progression, potentially providing a biomarker for progression. SIGNIFICANCE: Subclone expansion is a hallmark of progression from MDS to secondary AML. Subclonal signaling gene mutations are common at MDS (often at low levels), show complex and convergent patterns of clonal evolution, and are associated with future progression to secondary AML. See related article by Guess et al., p. 316 (33). See related commentary by Romine and van Galen, p. 270. This article is highlighted in the In This Issue feature, p. 265.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Neoplasias Primarias Secundarias , Evolución Clonal/genética , Progresión de la Enfermedad , Humanos , Leucemia Mieloide Aguda/genética , Mutación/genética , Síndromes Mielodisplásicos/genética
5.
Blood ; 140(14): 1607-1620, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35675516

RESUMEN

Hematopoietic stem/progenitor cells (HSPCs) reside in localized microenvironments, or niches, in the bone marrow that provide key signals regulating their activity. A fundamental property of hematopoiesis is the ability to respond to environmental cues such as inflammation. How these cues are transmitted to HSPCs within hematopoietic niches is not well established. Here, we show that perivascular bone marrow dendritic cells (DCs) express a high basal level of Toll-like receptor-1 (TLR1) and TLR2. Systemic treatment with a TLR1/2 agonist induces HSPC expansion and mobilization. It also induces marked alterations in the bone marrow microenvironment, including a decrease in osteoblast activity and sinusoidal endothelial cell numbers. TLR1/2 agonist treatment of mice in which Myd88 is deleted specifically in DCs using Zbtb46-Cre show that the TLR1/2-induced expansion of multipotent HPSCs, but not HSPC mobilization or alterations in the bone marrow microenvironment, is dependent on TLR1/2 signaling in DCs. Interleukin-1ß (IL-1ß) is constitutively expressed in both murine and human DCs and is further induced after TLR1/2 stimulation. Systemic TLR1/2 agonist treatment of Il1r1-/- mice show that TLR1/2-induced HSPC expansion is dependent on IL-1ß signaling. Single-cell RNA-sequencing of low-risk myelodysplastic syndrome bone marrow revealed that IL1B and TLR1 expression is increased in DCs. Collectively, these data suggest a model in which TLR1/2 stimulation of DCs induces secretion of IL-1ß and other inflammatory cytokines into the perivascular niche, which in turn, regulates multipotent HSPCs. Increased DC TLR1/2 signaling may contribute to altered HSPC function in myelodysplastic syndrome by increasing local IL-1ß expression.


Asunto(s)
Células de la Médula Ósea , Células Dendríticas , Células Madre Hematopoyéticas , Interleucina-1beta , Síndromes Mielodisplásicos , Animales , Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Citocinas/metabolismo , Células Dendríticas/citología , Células Madre Hematopoyéticas/citología , Humanos , Interleucina-1beta/metabolismo , Ratones , Síndromes Mielodisplásicos/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , ARN/metabolismo , Receptor Toll-Like 1/metabolismo , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 2/metabolismo
6.
Blood Cancer Discov ; 3(1): 32-49, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35019859

RESUMEN

To better understand clonal and transcriptional adaptations after relapse in patients with acute myeloid leukemia (AML), we collected presentation and relapse samples from six normal karyotype AML cases. We performed enhanced whole-genome sequencing to characterize clonal evolution, and deep-coverage single-cell RNA sequencing on the same samples, which yielded 142,642 high-quality cells for analysis. Identifying expressed mutations in individual cells enabled us to discriminate between normal and AML cells, to identify coordinated changes in the genome and transcriptome, and to identify subclone-specific cell states. We quantified the coevolution of genetic and transcriptional heterogeneity during AML progression, and found that transcriptional changes were significantly correlated with genetic changes. However, transcriptional adaptation sometimes occurred independently, suggesting that clonal evolution does not represent all relevant biological changes. In three cases, we identified cells at diagnosis that likely seeded the relapse. Finally, these data revealed a conserved relapse-enriched leukemic cell state bearing markers of stemness, quiescence, and adhesion. SIGNIFICANCE: These data enabled us to identify a relapse-enriched leukemic cell state with distinct transcriptional properties. Detailed case-by-case analyses elucidated the complex ways in which the AML genome, transcriptome, and immune microenvironment interact to evade chemotherapy. These analyses provide a blueprint for evaluating these factors in larger cohorts.This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Leucemia Mieloide Aguda , Evolución Clonal , Humanos , Cariotipo , Leucemia Mieloide Aguda/diagnóstico , Mutación , Recurrencia , Microambiente Tumoral
8.
Leukemia ; 36(4): 935-945, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34873300

RESUMEN

Recurrent mutations in IDH1 or IDH2 in acute myeloid leukemia (AML) are associated with increased DNA methylation, but the genome-wide patterns of this hypermethylation phenotype have not been comprehensively studied in AML samples. We analyzed whole-genome bisulfite sequencing data from 15 primary AML samples with IDH1 or IDH2 mutations, which identified ~4000 focal regions that were uniquely hypermethylated in IDHmut samples vs. normal CD34+ cells and other AMLs. These regions had modest hypermethylation in AMLs with biallelic TET2 mutations, and levels of 5-hydroxymethylation that were diminished in IDH and TET-mutant samples, indicating that this hypermethylation results from inhibition of TET-mediated demethylation. Focal hypermethylation in IDHmut AMLs occurred at regions with low methylation in CD34+ cells, implying that DNA methylation and demethylation are active at these loci. AML samples containing IDH and DNMT3AR882 mutations were significantly less hypermethylated, suggesting that IDHmut-associated hypermethylation is mediated by DNMT3A. IDHmut-specific hypermethylation was highly enriched for enhancers that form direct interactions with genes involved in normal hematopoiesis and AML, including MYC and ETV6. These results suggest that focal hypermethylation in IDH-mutant AML occurs by altering the balance between DNA methylation and demethylation, and that disruption of these pathways at enhancers may contribute to AML pathogenesis.


Asunto(s)
Metilación de ADN , Leucemia Mieloide Aguda , Humanos , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Mutación , Secuencias Reguladoras de Ácidos Nucleicos
9.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845035

RESUMEN

Acute myeloid leukemia (AML) patients rarely have long first remissions (LFRs; >5 y) after standard-of-care chemotherapy, unless classified as favorable risk at presentation. Identification of the mechanisms responsible for long vs. more typical, standard remissions may help to define prognostic determinants for chemotherapy responses. Using exome sequencing, RNA-sequencing, and functional immunologic studies, we characterized 28 normal karyotype (NK)-AML patients with >5 y first remissions after chemotherapy (LFRs) and compared them to a well-matched group of 31 NK-AML patients who relapsed within 2 y (standard first remissions [SFRs]). Our combined analyses indicated that genetic-risk profiling at presentation (as defined by European LeukemiaNet [ELN] 2017 criteria) was not sufficient to explain the outcomes of many SFR cases. Single-cell RNA-sequencing studies of 15 AML samples showed that SFR AML cells differentially expressed many genes associated with immune suppression. The bone marrow of SFR cases had significantly fewer CD4+ Th1 cells; these T cells expressed an exhaustion signature and were resistant to activation by T cell receptor stimulation in the presence of autologous AML cells. T cell activation could be restored by removing the AML cells or blocking the inhibitory major histocompatibility complex class II receptor, LAG3. Most LFR cases did not display these features, suggesting that their AML cells were not as immunosuppressive. These findings were confirmed and extended in an independent set of 50 AML cases representing all ELN 2017 risk groups. AML cell-mediated suppression of CD4+ T cell activation at presentation is strongly associated with unfavorable outcomes in AML patients treated with standard chemotherapy.


Asunto(s)
Tolerancia Inmunológica/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Adulto , Linfocitos T CD4-Positivos/inmunología , Femenino , Humanos , Tolerancia Inmunológica/inmunología , Cariotipo , Leucemia Mieloide Aguda/terapia , Masculino , Persona de Mediana Edad , Pronóstico , Recurrencia , Inducción de Remisión , Factores de Riesgo , Análisis de Secuencia de ARN/métodos , Células TH1/inmunología , Transcriptoma/genética , Resultado del Tratamiento
10.
Nat Commun ; 12(1): 4549, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315901

RESUMEN

Germline pathogenic variants in DNMT3A were recently described in patients with overgrowth, obesity, behavioral, and learning difficulties (DNMT3A Overgrowth Syndrome/DOS). Somatic mutations in the DNMT3A gene are also the most common cause of clonal hematopoiesis, and can initiate acute myeloid leukemia (AML). Using whole genome bisulfite sequencing, we studied DNA methylation in peripheral blood cells of 11 DOS patients and found a focal, canonical hypomethylation phenotype, which is most severe with the dominant negative DNMT3AR882H mutation. A germline mouse model expressing the homologous Dnmt3aR878H mutation phenocopies most aspects of the human DOS syndrome, including the methylation phenotype and an increased incidence of spontaneous hematopoietic malignancies, suggesting that all aspects of this syndrome are caused by this mutation.


Asunto(s)
Anomalías Múltiples/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Epigénesis Genética , Anomalías Múltiples/sangre , Adolescente , Adulto , Animales , Conducta Animal , Peso Corporal/genética , Células de la Médula Ósea/metabolismo , Niño , Preescolar , Islas de CpG/genética , Metilación de ADN/genética , ADN Metiltransferasa 3A , Femenino , Perfilación de la Expresión Génica , Mutación de Línea Germinal/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Lactante , Leucemia/genética , Leucemia/patología , Masculino , Ratones Endogámicos C57BL , Obesidad/genética , Fenotipo , Síndrome , Transcripción Genética
11.
N Engl J Med ; 384(10): 924-935, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33704937

RESUMEN

BACKGROUND: Genomic analysis is essential for risk stratification in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS). Whole-genome sequencing is a potential replacement for conventional cytogenetic and sequencing approaches, but its accuracy, feasibility, and clinical utility have not been demonstrated. METHODS: We used a streamlined whole-genome sequencing approach to obtain genomic profiles for 263 patients with myeloid cancers, including 235 patients who had undergone successful cytogenetic analysis. We adapted sample preparation, sequencing, and analysis to detect mutations for risk stratification using existing European Leukemia Network (ELN) guidelines and to minimize turnaround time. We analyzed the performance of whole-genome sequencing by comparing our results with findings from cytogenetic analysis and targeted sequencing. RESULTS: Whole-genome sequencing detected all 40 recurrent translocations and 91 copy-number alterations that had been identified by cytogenetic analysis. In addition, we identified new clinically reportable genomic events in 40 of 235 patients (17.0%). Prospective sequencing of samples obtained from 117 consecutive patients was performed in a median of 5 days and provided new genetic information in 29 patients (24.8%), which changed the risk category for 19 patients (16.2%). Standard AML risk groups, as defined by sequencing results instead of cytogenetic analysis, correlated with clinical outcomes. Whole-genome sequencing was also used to stratify patients who had inconclusive results by cytogenetic analysis into risk groups in which clinical outcomes were measurably different. CONCLUSIONS: In our study, we found that whole-genome sequencing provided rapid and accurate genomic profiling in patients with AML or MDS. Such sequencing also provided a greater diagnostic yield than conventional cytogenetic analysis and more efficient risk stratification on the basis of standard risk categories. (Funded by the Siteman Cancer Research Fund and others.).


Asunto(s)
Análisis Citogenético , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/genética , Secuenciación Completa del Genoma , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Análisis de Supervivencia , Secuenciación Completa del Genoma/métodos
12.
N Engl J Med ; 379(24): 2330-2341, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30380364

RESUMEN

BACKGROUND: As consolidation therapy for acute myeloid leukemia (AML), allogeneic hematopoietic stem-cell transplantation provides a benefit in part by means of an immune-mediated graft-versus-leukemia effect. We hypothesized that the immune-mediated selective pressure imposed by allogeneic transplantation may cause distinct patterns of tumor evolution in relapsed disease. METHODS: We performed enhanced exome sequencing on paired samples obtained at initial presentation with AML and at relapse from 15 patients who had a relapse after hematopoietic stem-cell transplantation (with transplants from an HLA-matched sibling, HLA-matched unrelated donor, or HLA-mismatched unrelated donor) and from 20 patients who had a relapse after chemotherapy. We performed RNA sequencing and flow cytometry on a subgroup of these samples and on additional samples for validation. RESULTS: On exome sequencing, the spectrum of gained and lost mutations observed with relapse after transplantation was similar to the spectrum observed with relapse after chemotherapy. Specifically, relapse after transplantation was not associated with the acquisition of previously unknown AML-specific mutations or structural variations in immune-related genes. In contrast, RNA sequencing of samples obtained at relapse after transplantation revealed dysregulation of pathways involved in adaptive and innate immunity, including down-regulation of major histocompatibility complex (MHC) class II genes ( HLA-DPA1, HLA-DPB1, HLA-DQB1, and HLA-DRB1) to levels that were 3 to 12 times lower than the levels seen in paired samples obtained at presentation. Flow cytometry and immunohistochemical analysis confirmed decreased expression of MHC class II at relapse in 17 of 34 patients who had a relapse after transplantation. Evidence suggested that interferon-γ treatment could rapidly reverse this phenotype in AML blasts in vitro. CONCLUSIONS: AML relapse after transplantation was not associated with the acquisition of relapse-specific mutations in immune-related genes. However, it was associated with dysregulation of pathways that may influence immune function, including down-regulation of MHC class II genes, which are involved in antigen presentation. These epigenetic changes may be reversible with appropriate therapy. (Funded by the National Cancer Institute and others.).


Asunto(s)
Genes MHC Clase II/fisiología , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Mutación , Adolescente , Adulto , Anciano , Regulación hacia Abajo , Epigénesis Genética , Femenino , Citometría de Flujo , Humanos , Inmunidad/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , ARN Neoplásico/análisis , Recurrencia , Análisis de Secuencia de ARN , Linfocitos T/inmunología , Trasplante Homólogo , Secuenciación del Exoma
13.
N Engl J Med ; 379(11): 1028-1041, 2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30207916

RESUMEN

BACKGROUND: Allogeneic hematopoietic stem-cell transplantation is the only curative treatment for patients with myelodysplastic syndrome (MDS). The molecular predictors of disease progression after transplantation are unclear. METHODS: We sequenced bone marrow and skin samples from 90 adults with MDS who underwent allogeneic hematopoietic stem-cell transplantation after a myeloablative or reduced-intensity conditioning regimen. We detected mutations before transplantation using enhanced exome sequencing, and we evaluated mutation clearance by using error-corrected sequencing to genotype mutations in bone marrow samples obtained 30 days after transplantation. In this exploratory study, we evaluated the association of a mutation detected after transplantation with disease progression and survival. RESULTS: Sequencing identified at least one validated somatic mutation before transplantation in 86 of 90 patients (96%); 32 of these patients (37%) had at least one mutation with a maximum variant allele frequency of at least 0.5% (equivalent to 1 heterozygous mutant cell in 100 cells) 30 days after transplantation. Patients with disease progression had mutations with a higher maximum variant allele frequency at 30 days than those who did not (median maximum variant allele frequency, 0.9% vs. 0%; P<0.001). The presence of at least one mutation with a variant allele frequency of at least 0.5% at day 30 was associated with a higher risk of progression (53.1% vs. 13.0%; conditioning regimen-adjusted hazard ratio, 3.86; 95% confidence interval [CI], 1.96 to 7.62; P<0.001) and a lower 1-year rate of progression-free survival than the absence of such a mutation (31.3% vs. 59.3%; conditioning regimen-adjusted hazard ratio for progression or death, 2.22; 95% CI, 1.32 to 3.73; P=0.005). The rate of progression-free survival was lower among patients who had received a reduced-intensity conditioning regimen and had at least one persistent mutation with a variant allele frequency of at least 0.5% at day 30 than among patients with other combinations of conditioning regimen and mutation status (P≤0.001). Multivariate analysis confirmed that patients who had a mutation with a variant allele frequency of at least 0.5% detected at day 30 had a higher risk of progression (hazard ratio, 4.48; 95% CI, 2.21 to 9.08; P<0.001) and a lower 1-year rate of progression-free survival than those who did not (hazard ratio for progression or death, 2.39; 95% CI, 1.40 to 4.09; P=0.002). CONCLUSIONS: The risk of disease progression was higher among patients with MDS in whom persistent disease-associated mutations were detected in the bone marrow 30 days after transplantation than among those in whom these mutations were not detected. (Funded by the Leukemia and Lymphoma Society and others.).


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mutación , Síndromes Mielodisplásicos/genética , Adulto , Examen de la Médula Ósea , Análisis Mutacional de ADN , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Humanos , Leucemia Mieloide Aguda/genética , Persona de Mediana Edad , Síndromes Mielodisplásicos/mortalidad , Síndromes Mielodisplásicos/terapia , Piel/patología , Análisis de Supervivencia , Acondicionamiento Pretrasplante , Trasplante Homólogo
14.
JCI Insight ; 3(5)2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29515031

RESUMEN

Allogeneic hematopoietic cell transplantation (alloHCT) is a potentially curative treatment for myelodysplastic syndromes (MDS), but patients who relapse after transplant have poor outcomes. In order to understand the contribution of tumor clonal evolution to disease progression,we applied exome and error-corrected targeted sequencing coupled with copy number analysis to comprehensively define changes in the clonal architecture of MDS in response to therapy using 51 serially acquired tumor samples from 9 patients who progressed after an alloHCT. We show that small subclones before alloHCT can drive progression after alloHCT. Notably, at least one subclone expanded or emerged at progression in all patients. Newly acquired structural variants (SVs) were present in an emergent/expanding subclone in 8 of 9 patients at progression, implicating the acquisition of SVs as important late subclonal progression events. In addition, pretransplant therapy with azacitidine likely influenced the mutation spectrum and evolution of emergent subclones after alloHCT. Although subclone evolution is common, founding clone mutations are always present at progression and could be detected in the bone marrow as early as 30 and/or 100 days after alloHCT in 6 of 8 (75%) patients, often prior to clinical progression. In conclusion, MDS progression after alloHCT is characterized by subclonal expansion and evolution, which can be influenced by pretransplant therapy.


Asunto(s)
Evolución Clonal/inmunología , Trasplante de Células Madre Hematopoyéticas , Síndromes Mielodisplásicos/terapia , Recurrencia Local de Neoplasia/genética , Adulto , Anciano , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/efectos adversos , Azacitidina/administración & dosificación , Azacitidina/efectos adversos , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Evolución Clonal/efectos de los fármacos , Células Clonales/efectos de los fármacos , Células Clonales/inmunología , Análisis Mutacional de ADN , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación/efectos de los fármacos , Agonistas Mieloablativos/administración & dosificación , Agonistas Mieloablativos/efectos adversos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/inmunología , Síndromes Mielodisplásicos/patología , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/patología , Acondicionamiento Pretrasplante/efectos adversos , Acondicionamiento Pretrasplante/métodos , Trasplante Homólogo , Resultado del Tratamiento
16.
Nat Commun ; 9(1): 455, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29386642

RESUMEN

Hematopoietic clones harboring specific mutations may expand over time. However, it remains unclear how different cellular stressors influence this expansion. Here we characterize clonal hematopoiesis after two different cellular stressors: cytotoxic therapy and hematopoietic transplantation. Cytotoxic therapy results in the expansion of clones carrying mutations in DNA damage response genes, including TP53 and PPM1D. Analyses of sorted populations show that these clones are typically multilineage and myeloid-biased. Following autologous transplantation, most clones persist with stable chimerism. However, DNMT3A mutant clones often expand, while PPM1D mutant clones often decrease in size. To assess the leukemic potential of these expanded clones, we genotyped 134 t-AML/t-MDS samples. Mutations in non-TP53 DNA damage response genes are infrequent in t-AML/t-MDS despite several being commonly identified after cytotoxic therapy. These data suggest that different hematopoietic stressors promote the expansion of distinct long-lived clones, carrying specific mutations, whose leukemic potential depends partially on the mutations they harbor.


Asunto(s)
Antineoplásicos/farmacología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de la radiación , Leucemia/etiología , Selección Genética , Adolescente , Adulto , Anciano , Estudios de Casos y Controles , Células Clonales/efectos de los fármacos , Células Clonales/efectos de la radiación , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Femenino , Genes p53 , Humanos , Linfoma/terapia , Masculino , Persona de Mediana Edad , Mieloma Múltiple/terapia , Proteína Fosfatasa 2C/genética , Adulto Joven
17.
Cell ; 168(5): 801-816.e13, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28215704

RESUMEN

DNMT3A mutations occur in ∼25% of acute myeloid leukemia (AML) patients. The most common mutation, DNMT3AR882H, has dominant negative activity that reduces DNA methylation activity by ∼80% in vitro. To understand the contribution of DNMT3A-dependent methylation to leukemogenesis, we performed whole-genome bisulfite sequencing of primary leukemic and non-leukemic cells in patients with or without DNMT3AR882 mutations. Non-leukemic hematopoietic cells with DNMT3AR882H displayed focal methylation loss, suggesting that hypomethylation antedates AML. Although virtually all AMLs with wild-type DNMT3A displayed CpG island hypermethylation, this change was not associated with gene silencing and was essentially absent in AMLs with DNMT3AR882 mutations. Primary hematopoietic stem cells expanded with cytokines were hypermethylated in a DNMT3A-dependent manner, suggesting that hypermethylation may be a response to, rather than a cause of, cellular proliferation. Our findings suggest that hypomethylation is an initiating phenotype in AMLs with DNMT3AR882, while DNMT3A-dependent CpG island hypermethylation is a consequence of AML progression.


Asunto(s)
Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Leucemia Mieloide Aguda/genética , Células de la Médula Ósea/patología , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Epigénesis Genética , Humanos , Leucemia Mieloide Aguda/patología , Mutación , Análisis de Secuencia de ADN
18.
N Engl J Med ; 375(21): 2023-2036, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27959731

RESUMEN

BACKGROUND: The molecular determinants of clinical responses to decitabine therapy in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) are unclear. METHODS: We enrolled 84 adult patients with AML or MDS in a single-institution trial of decitabine to identify somatic mutations and their relationships to clinical responses. Decitabine was administered at a dose of 20 mg per square meter of body-surface area per day for 10 consecutive days in monthly cycles. We performed enhanced exome or gene-panel sequencing in 67 of these patients and serial sequencing at multiple time points to evaluate patterns of mutation clearance in 54 patients. An extension cohort included 32 additional patients who received decitabine in different protocols. RESULTS: Of the 116 patients, 53 (46%) had bone marrow blast clearance (<5% blasts). Response rates were higher among patients with an unfavorable-risk cytogenetic profile than among patients with an intermediate-risk or favorable-risk cytogenetic profile (29 of 43 patients [67%] vs. 24 of 71 patients [34%], P<0.001) and among patients with TP53 mutations than among patients with wild-type TP53 (21 of 21 [100%] vs. 32 of 78 [41%], P<0.001). Previous studies have consistently shown that patients with an unfavorable-risk cytogenetic profile and TP53 mutations who receive conventional chemotherapy have poor outcomes. However, in this study of 10-day courses of decitabine, neither of these risk factors was associated with a lower rate of overall survival than the rate of survival among study patients with intermediate-risk cytogenetic profiles. CONCLUSIONS: Patients with AML and MDS who had cytogenetic abnormalities associated with unfavorable risk, TP53 mutations, or both had favorable clinical responses and robust (but incomplete) mutation clearance after receiving serial 10-day courses of decitabine. Although these responses were not durable, they resulted in rates of overall survival that were similar to those among patients with AML who had an intermediate-risk cytogenetic profile and who also received serial 10-day courses of decitabine. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT01687400 .).


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Azacitidina/análogos & derivados , Médula Ósea/patología , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación , Síndromes Mielodisplásicos/tratamiento farmacológico , Proteína p53 Supresora de Tumor/genética , 5-Metilcitosina/análisis , Adulto , Anciano , Anciano de 80 o más Años , Antimetabolitos Antineoplásicos/efectos adversos , Azacitidina/administración & dosificación , Azacitidina/efectos adversos , Biomarcadores de Tumor/análisis , Médula Ósea/química , Decitabina , Exoma , Femenino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/mortalidad , Estudios Prospectivos , Factores de Riesgo , Tasa de Supervivencia
19.
Exp Hematol ; 44(7): 603-13, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27181063

RESUMEN

The genomic events responsible for the pathogenesis of relapsed adult B-lymphoblastic leukemia (B-ALL) are not yet clear. We performed integrative analysis of whole-genome, whole-exome, custom capture, whole-transcriptome (RNA-seq), and locus-specific genomic assays across nine time points from a patient with primary de novo B-ALL. Comprehensive genome and transcriptome characterization revealed a dramatic tumor evolution during progression, yielding a tumor with complex clonal architecture at second relapse. We observed and validated point mutations in EP300 and NF1, a highly expressed EP300-ZNF384 gene fusion, a microdeletion in IKZF1, a focal deletion affecting SETD2, and large deletions affecting RB1, PAX5, NF1, and ETV6. Although the genome analysis revealed events of potential biological relevance, no clinically actionable treatment options were evident at the time of the second relapse. However, transcriptome analysis identified aberrant overexpression of the targetable protein kinase encoded by the FLT3 gene. Although the patient had refractory disease after salvage therapy for the second relapse, treatment with the FLT3 inhibitor sunitinib rapidly induced a near complete molecular response, permitting the patient to proceed to a matched-unrelated donor stem cell transplantation. The patient remains in complete remission more than 4 years later. Analysis of this patient's relapse genome revealed an unexpected, actionable therapeutic target that led to a specific therapy associated with a rapid clinical response. For some patients with relapsed or refractory cancers, this approach may indicate a novel therapeutic intervention that could alter outcome.


Asunto(s)
Genómica , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Activación Transcripcional , Tirosina Quinasa 3 Similar a fms/genética , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biopsia , Médula Ósea/patología , Trasplante de Médula Ósea , Ciclofosfamida/uso terapéutico , Análisis Citogenético , Dexametasona/uso terapéutico , Doxorrubicina/uso terapéutico , Citometría de Flujo , Perfilación de la Expresión Génica , Variación Genética , Genómica/métodos , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/etiología , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Recurrencia , Trasplante Homólogo , Vincristina/uso terapéutico
20.
Blood ; 127(7): 893-7, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26631115

RESUMEN

There is interest in using leukemia-gene panels and next-generation sequencing to assess acute myelogenous leukemia (AML) response to induction chemotherapy. Studies have shown that patients with AML in morphologic remission may continue to have clonal hematopoiesis with populations closely related to the founding AML clone and that this confers an increased risk of relapse. However, it remains unknown how induction chemotherapy influences the clonal evolution of a patient's nonleukemic hematopoietic population. Here, we report that 5 of 15 patients with genetic clearance of their founding AML clone after induction chemotherapy had a concomitant expansion of a hematopoietic population unrelated to the initial AML. These populations frequently harbored somatic mutations in genes recurrently mutated in AML or myelodysplastic syndromes and were detectable at very low frequencies at the time of AML diagnosis. These results suggest that nonleukemic hematopoietic stem and progenitor cells, harboring specific aging-acquired mutations, may have a competitive fitness advantage after induction chemotherapy, expand, and persist long after the completion of chemotherapy. Although the clinical importance of these "rising" clones remains to be determined, it will be important to distinguish them from leukemia-related populations when assessing for molecular responses to induction chemotherapy.


Asunto(s)
Envejecimiento , Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Mutación , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Células Cultivadas , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Recurrencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...